Tes Penilaian Situasional Kecemasan Mahasiswa Jurusan Psikologi terhadap Statistika: Uji validitas konstruk

Muhammad Dwirifqi Kharisma Putra, Elok Fa’iz Fatma El Fahmi

Abstract


Penelitian ini dilakukan dengan tujuan untuk melaporkan hasil pengujian validitas konstruk terhadap Tes Penilaian Situasional Kecemasan Mahasiswa terhadap Statistika (TPS-KMS). TPS-KMS merupakan tes penilaian situasional (SJT; situational judgement test) yang terdiri dari 14 butir untuk mengukur model multidimensi dari kecemasan terhadap statistika yaitu examination anxiety (EA) dan asking for help anxiety (AH). Responden dalam penelitian ini merupakan 488 orang mahasiswa jurusan psikologi di Indonesia. TPS-KMS diuji validitasnya dengan Item Factor Analysis (IFA). Hasil analisis dengan IFA menunjukkan bahwa model pengukuran 2-faktor dari TPS-KMS fit dengan baik. Pada tingkat butir, ditemukan bahwa ke-14 butir valid untuk mengukur apa yang hendak diukur. Sebagai informasi tambahan, ditemukan bahwa reliabilitas TPS-KMS berada diatas nilai penerimaan yang menunjukkan konsistensi internal yang baik (w EA = 0.702; w AH = 0.756). Dapat disimpulkan bahwa TPS-KMS merupakan SJT pertama untuk mengukur kecemasan terhadap statistika yang telah teruji validitas konstruknya. Implikasi dan saran untuk penelitian mendatang turut didiskusikan.

Keywords


analisis faktor butir, kecemasan terhadap statistika, tes penilaian situasional, validitas konstruk

Full Text:

PDF

References


Al Hashmi, W., & Klassen, R. M. (2020). Developing a situational judgement test for admission into initial teacher education in Oman: An exploratory study. International Journal of School & Educational Psychology, 8(Suppl 1), 187–198. https://doi.org/10.1080/21683603.2019.1630042

American Psychological Association. (2013). APA guidelines for the undergraduate psychology major (Version 2.0). American Psychological Association. https://www.apa.org/ed/precollege/about/psymajor-guidelines.pdf

Andrews, C. M. (2021). Improving psychology students’ attitudes and anxiety about statistics. Doctoral dissertation, University of Wisconsin-Madison, United States of America

Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report. American Psychologist, 73(1), 3–25. https://doi.org/10.1037/amp0000191

Bandalos, D. L. (2021). Item meaning and order as causes of correlated residuals in confirmatory factor analysis. Structural Equation Modeling, 28(6), 903–913. https://doi.org/10.1080/10705511.2021.1916395

Bardach, L., Rushby, J. V., & Klassen, R. M. (2021). The selection gap in teacher education: Adverse effects of ethnicity, gender, and socioâ€economic status on situational judgement test performance. British Journal of Educational Psychology, 91(3), 1015–1034. https://doi.org/10.1111/bjep.12405

Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). The Guilford Press.

Chen, Y., & Zhang, S. (2021). Estimation methods for item factor analysis: An overview. In Y. Zhao & D. Chen (Eds.), Modern statistical methods for health research (pp. 329-350). Springer. https://doi.org/10.1007/978-3-030-72437-5_15

Chew, P. K. H., & Dillon, D. B. (2014). Statistics anxiety update: refining the construct and recommendations for a new research agenda. Perspectives on Psychological Science, 9(2), 196–208. https://doi.org/10.1177/1745691613518077

Chiesi, F., Primi, C., & Carmona, J. (2011). Measuring statistics anxiety: Cross-country validity of the Statistical Anxiety Scale (SAS). Journal of Psychoeducational Assessment, 29(6), 559–569. https://doi.org/10.1177/0734282911404985

Clark, D. A., & Bowles, R. P. (2018). Model fit and item factor analysis: Overfactoring, underfactoring, and a program to guide interpretation. Multivariate Behavioral Research, 53(4), 544–558. https://doi.org/10.1080/00273171.2018.1461058

Cruise, R. J., Cash, R. W., & Bolton, D. L. (1985). Development and validation of an instrument to measure statistical anxiety. Proceedings of the American Statistical Association, Section on Statistical Education, Las Vegas, NV.

Cui, S., Zhang, J., Guan, D., Zhao, X., & Si, J. (2019). Antecedents of statistics anxiety: An integrated account. Personality and Individual Differences, 144, 79–87. https://doi.org/10.1016/j.paid.2019.02.036

Frey-Clark, M., Natesan, P., & O’Bryant, M. (2019). Assessing statistical anxiety among online and traditional students. Frontiers in Psychology, 10: 1440. https://doi.org/10.3389/fpsyg.2019.01440

Hanna, D., Shevlin, M., & Dempster, M. (2008). The structure of the Statistics Anxiety Rating Scale: A confirmatory factor analysis using UK psychology students. Personality and Individual Differences, 45(1), 68–74. https://doi.org/10.1016/j.paid.2008.02.021

Harenbrock, J., Forthmann, B., & Holling, H. (2023). Retest reliability of situational judgment tests: A meta-analysis. Journal of Personnel Psychology, 22(4), 169–184. https://doi.org/10.1027/1866-5888/a000323

Hoegler, S., & Nelson, M. (2018). The influence of anxiety and self-efficacy on statistics performance: A path analysis. Psi Chi Journal of Psychological Research, 23(5), 364–375. https://doi.org/10.24839/2325-7342.JN23.5.364

Hu, L.-t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

Hunt, B. W., Mari, T., Knibb, G., Christiansen, P., & Jones, A. (2023). Statistics anxiety and predictions of exam performance in UK psychology students. PLoS ONE 18(8): e0290467. https://doi.org/10.1371/journal.pone.0290467

Iriyadi, D., Asdar, A. K., Afriadi, B., Samad, M. A., & Syaputra, Y. D. (2024). Analysis of the Indonesian version of the statistical anxiety scale instrument with a psychometric approach. International Journal of Evaluation and Research in Education (IJERE), 13(2), 672-681. http://doi.org/10.11591/ijere.v13i2.26517

Jackson, D. L., Gillaspy, J. A., Jr., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14(1), 6–23. https://doi.org/10.1037/a0014694

Jazayeri, M., Li, X., Morris, E., Laurence, D., & Loch, B. (2022). Reducing statistics anxiety for psychology students during the global pandemic: a methodology approach. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2022.2059716

Kadosh, M., Hen, M., & Ferrari, J. R. (2023). Reducing statistics anxiety and academic procrastination among Israeli students: A pilot program. Teaching Statistics, 45(3), 167-175. https://doi.org/10.1111/test.12356

Kesici, S., Baloglu, M., & Deniz, M. E. (2011). Self-regulated learning strategies in relation with statistics anxiety. Learning and Individual Differences, 21(4), 472-477. https://doi.org/10.1016/j.lindif.2011.02.006

Lorenzo-Seva, U., Vigil-Colet, A., & Ferrando, P. J. (2022). Development of a revised version of the statistical anxiety scale. Psicothema, 34(4), 562–570. https://doi.org/10.7334/psicothema2022.231

MacArthur, K. R., & Santo, J. B. (2023). A multi-level analysis of the effects of statistics anxiety/attitudes on trajectories of exam scores. Journal of Statistics and Data Science Education, 31(1), 102-112. https://doi.org/10.1080/26939169.2022.2093805

Macher, D., Papousek, I., Ruggeri, K., & Paechter, M. (2015). Statistics anxiety and performance: blessings in disguise. Frontiers in Psychology, 6: 1116. https://doi.org/10.3389/fpsyg.2015.01116

Murano, D., Lipnevich, A. A., Walton, K. E., Burrus, J., Way, J. D., & Anguiano-Carrasco, C. (2021). Measuring social and emotional skills in elementary students: Development of self-report Likert, situational judgment test, and forced choice items. Personality and Individual Differences, 169, Article 110012. https://doi.org/10.1016/j.paid.2020.110012

Nesbit, R. J., & Bourne, V. J. (2018). Statistics Anxiety Rating Scale (STARS) use in psychology students: A review and analysis with an undergraduate sample. Psychology Teaching Review, 24(2), 101–110. https://doi.org/10.53841/bpsptr.2018.24.2.101

Nunnally, J. (1960). The place of statistics in psychology. Educational and Psychological Measurement, 20(4), 641–650. https://doi.org/10.1177/001316446002000401

O’Bryant, M. J. (2017). How attitudes towards statistics courses and the field of statistics predicts statistics anxiety among undergraduate social science majors: a validation of the Statistical Anxiety Scale. ProQuest LLC. Doctoral dissertation, University of North Texas. Available online at https://search.proquest.com/docview/2009455494

O’Bryant, M., Batley, P. N., & Onwuegbuzie, A. J. (2021). Validation of an adapted version of the Statistical Anxiety Scale in English and its relationship to attitudes toward statistics. SAGE Open, 11(1). https://doi.org/10.1177/21582440211001378

Oostrom, J. K., de Vries, R. E., & de Wit, M. (2019). Development and validation of a HEXACO situational judgment test. Human Performance, 32(1), 1–29. https://doi.org/10.1080/08959285.2018.1539856

Paul, L., Parveen, T., Ahmed, O., & Aktar, R. (2018). Adaptation study of the statistical anxiety scale on a Bangladeshi sample. Bulgarian Journal of Science and Education Policy (BJSEP), 12(2), 380-401.

Perchtold-Stefan, C. M., Schertler, M., Paechter, M., Fink, A., Weiss, E. M., & Papousek, I. (2024). Learning to be inventive in the face of statistics: A positive reappraisal intervention for statistics anxiety. Journal of Behavior Therapy and Experimental Psychiatry, 82: 101913. https://doi.org/10.1016/j.jbtep.2023.101913

Perlman, B., & McCann, L. I. (1999a). The most frequently listed courses in the undergraduate psychology curriculum. Teaching of Psychology, 26(3), 177–182. https://doi.org/10.1207/S15328023TOP260303

Perlman, B., & McCann, L. I. (1999b). The structure of the psychology undergraduate curriculum. Teaching of Psychology, 26(3), 171–176. https://doi.org/10.1207/S15328023TOP260302

Raykov, T., & Marcoulides, G. A. (2013). Basic statistics: An introduction with R. Rowman & Littlefield Publishers, Inc.

Schweizer, K., Gold, A., Krampen, D., & Troche, S. (2023). Conceptualizing correlated residuals as item-level method effects in confirmatory factor analysis. Educational and Psychological Measurement. https://doi.org/10.1177/00131644231218401

Siew, C. S. Q., McCartney, M. J., & Vitevitch, M. S. (2019). Using network science to understand statistics anxiety among college students. Scholarship of Teaching and Learning in Psychology, 5(1), 75–89. https://doi.org/10.1037/stl0000133

Slootmaeckers, K., Kerremans, B., & Adriaensen, J. (2014). Too afraid to learn: Attitudes towards statistics as a barrier to learning statistics and to acquiring quantitative skills. Politics, 34(2), 191-200. https://doi.org/10.1111/1467-9256.1204

Smith, T. F., & Capuzzi, G. (2019). Using a mindset intervention to reduce anxiety in the statistics classroom. Psychology Learning & Teaching, 18(3), 326–336. https://doi.org/10.1177/1475725719836641

Stowell, J. R., & Addison, W. E. (Eds.). (2017). Activities for teaching statistics and research methods: A guide for psychology instructors. American Psychological Association. https://doi.org/10.1037/0000024-000

Teng, Y., Brannick, M. T., & Borman, W. C. (2020). Capturing resilience in context: Development and validation of a situational judgment test of resilience. Human Performance, 33(2-3), 74–103. https://doi.org/10.1080/08959285.2019.1709069

Thompson, B., & Vacha-Haase, T. (2000). Psychometrics is datametrics: The test is not reliable. Educational and Psychological Measurement, 60(2), 174–195. https://doi.org/10.1177/00131640021970448

Tomcho, T. J., Rice, D., Foels, R., Folmsbee, L., Vladescu, J., Lissman, R., Matulewicz, R., & Bopp, K. (2009). APA’s learning objectives for research methods and statistics in practice: A multimethod analysis. Teaching of Psychology, 36(2), 84-89. https://doi.org/10.1080/00986280902739693

Vigil-Colet, A., Lorenzo-Seva, U., & Condon, L. (2008). Development and validation of the Statistical Anxiety Scale. Psicothema, 20(1), 174–180. https://doi.org/10.1037/t62688-000

Viladrich, C., Angulo-Brunet, A., & Doval, E. (2017). A journey around alpha and omega to estimate internal consistency reliability. Anales de Psicología, 33(3), 755–782. https://doi.org/10.6018/analesps.33.3.268401

Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12(1), 58–79. https://doi.org/10.1037/1082-989X.12.1.58

Wilson, M. (2013). Seeking a balance between the statistical and scientific elements in psychometrics. Psychometrika, 78(2), 211–236. https://doi.org/10.1007/s11336-013-9327-3

Wu, R., Chen, J., Li, Q., & Zhou, H. (2022). Reducing the influence of perfectionism and statistics anxiety on college student performance in statistics courses. Frontiers in Psychology, 13: 1011278. https://doi.org/10.3389%2Ffpsyg.2022.1011278




DOI: https://doi.org/10.31004/edukatif.v6i3.6601

Article Metrics

Abstract view : 178 times
PDF - 65 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Muhammad Dwirifqi Kharisma Putra, Elok Fa’iz Fatma El Fahmi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.