

# **Edukatif: Jurnal Ilmu Pendidikan**

Volume 5 Nomor 6 Bulan Desember Tahun 2023 Halaman 2406 - 2424

https://edukatif.org/index.php/edukatif/index

# Upaya Meningkatkan Kemampuan Koneksi Matematis Siswa melalui Pembelajaran dengan Model *Project Based Learning*

# Sumarsih<sup>⊠</sup>

Sekolah Menengah Pertama Negeri 1 Masaran, Sragen, Indonesia<sup>3</sup> e-mail : sumarsih2274@gmail.com

#### Abstrak

Penelitian dilatarbelakangi oleh rendahnya kemampuan siswa berpikir kritis, literasi, representasi matematis, dan memecahkan masalah. Sementara itu peran guru belum optimal, serta rendahnya penguasaan materi prasyarat dan kemandirian belajar. Penelitian ini bertujuan untuk meningkatkan Kemampuan Koneksi Matematis (KKM) siswa melalui pembelajaran dengan model *Project Based learning* (PjBL). Desain penelitian menggunakan model Kemmis dan Taggart dalam dua siklus. Setiap siklus dengan tahapan perencanaan, tindakan, pengamatan, serta refleksi. Sampel penelitian adalah siswa kelas VII E di SMP Negeri 1 Masaran. Data dianalisis dengan Teknik deskriptif kualitatif. Hasil penelitian menunjukkan bahwa pembelajaran dengan model PjBL dapat meningkatkan Mathematical Connection Ability. Hal ini ditandai dengan meningkatnya persentase siswa yang memenuhi kriteria ketuntasan minimal. Peningkatan diukur pada kondisi awal, siklus I, dan siklus II. Keterampilan berpikir kritis siswa dapat dikembangkan melalui kegiatan kontekstual yang mudah dipraktikkan. Literasi numerasi dapat dikembangkan melalui membaca data hasil praktik. Siswa lebih mudah mengenali ide-ide dan merepresentasikannya dalam tabel atau dengan korespondensi satu-satu, serta dapat menghubungkannya. Siswa menunjukkan sikap lebih aktif dan mau bertanya. Hasil tindakan menunjukkan bahwa, siswa mampu menyelesaikan masalah perbandingan dikaitkan dengan topik matematika lain, mata pelajaran lain, maupun masalah sehari-hari atau pada dunia nyata.

Kata Kunci: Koneksi Matematis, Project Based-Learning

### Abstract

This study aims to improve students' Mathematical Connection Ability through learning with the Project Based Learning (PjBL) model. The research was motivated by students' low ability to think critically, literacy, mathematical representation, and problem-solving. Meanwhile, the role of teachers could be more optimal, and there needs to be higher mastery of prerequisite material and learning independence. The research design uses the Kemmis and Taggart model in two cycles. Each cycle includes stages of planning, action, observation, and reflection. The research sample was class VII E students at SMP Negeri 1 Masaran. Data were analyzed using qualitative descriptive techniques. The research results show that learning with the PjBL model can improve Mathematical Connection Ability. This is indicated by an increase in the percentage of students who meet the minimum completeness criteria. Improvement was measured in initial conditions, cycle I and cycle II. Students' critical thinking skills can be developed through contextual activities that are easy to practice. Numeracy literacy can be acquired through reading practical data. Students more easily recognize ideas and represent them in tables or with one-to-one correspondence and can connect them. Students show a more active attitude and are willing to ask questions. The action results show that students can solve comparative problems related to other math topics, other subjects, everyday situations, or in the real world.

Keywords: Mathematical Connection, Project Based-Learning

Copyright (c) 2023 Sumarsih

 $\boxtimes$  Corresponding author :

Email : <a href="mailto:sumarsih2274@gmail.com">sumarsih2274@gmail.com</a>
ISSN 2656-8063 (Media Cetak)

DOI : <a href="https://doi.org/10.31004/edukatif.v5i6.5559">https://doi.org/10.31004/edukatif.v5i6.5559</a>
ISSN 2656-8071 (Media Online)

# **PENDAHULUAN**

Pembelajaran di New normal era, siswa belajar di sekolah dengan waktu terbatas. New normal era adalah sebuah tatanan hidup baru sebagai dampak adanya wabah covid-19 (Widodo, 2020). New Normal Era merupakan kehidupan yang akan dijalankan seperti biasa ditambah dengan protokoler kesehatan (Adisasmita, n.d.). Dampak wabah covid-19 secara mendalam akan membentuk *stay at home lifestyle* dan memaksa orang membuat pola hidup baru atau *remodelling of life* (Yuswohady, 2020). Guru ditantang untuk dapat merancang strategi dan media pembelajaran yang dapat memfasilitasi dan memotivasi siswa untuk tetap belajar. Praktis para guru dan siswa harus dapat menerapkan metode pembelajaran dan metode belajarnya dengan cara yang berbeda dengan sebelumnya. Guru harus berpikir keras untuk dapat merancang pembelajaran dan membagi alokasi waktu sehingga indikator pencapaian kompetensi pokok dapat dikuasai siswa.

Diperoleh fakta bahwa peran guru secara langsung pada proses belajar siswa dirasakan frekuensinya masih sangat kurang. (Sardiman, 2011) menyebutkan peranan guru di antaranya sebagai motivator, inisiator, dan mediator. Peran guru penting artinya dalam memberikan rangsangan dan dorongan untuk mengembangkan potensi siswa, menumbuhkan swadaya (aktivitas), dan daya cipta (kreativitas). Guru sebagai pencetus ide-ide kreatif dalam proses belajar yang dapat dicontoh oleh anak didik. Guru dapat menjadi sumber inspirasi bagi siswa. Guru dapat menengahi atau memberikan jalan keluar atau solusi ketika diskusi tidak berjalan dengan baik. Saat dilaksanakan PTM terbatas, interaksi antara guru dengan siswa sangat terbatas. Akibatnya tidak semua peran guru tersebut dapat berfungsi secara optimal.

Berdasarkan wawancara dan pengamatan dokumen perangkat pembelajaran guru, ditunjukkan bahwa selain PTM terbatas guru juga memfasilitasi siswa untuk belajar di rumah. Pembelajaran dilaksanakan melalui blended learning. Pembelajaran tatap muka dikombinasi dengan memfasilitasi siswa link google site disampaikan melalui grup Whatsapp (WA). Di link tersebut siswa dapat mengakses materi pembelajaran dalam bentuk youtube video pembelajaran, ringkasan-ringkasan materi, dan latihan soal-soal untuk dipelajari kembali di rumah. Berdasarkan catatan guru, hampir 100% siswa dapat bergabung di grup WA kelas. Ironisnya, terdapat kurang dari 40% siswa mau menanyakan kesulitan belajarnya kepada guru melalui grup WA, WA pribadi, maupun bertanya secara langsung. Antusiasme siswa untuk belajar dengan menyimak video pembelajaran masih rendah. Kenyataan tersebut menunjukkan bahwa kemampuan berpikir kritis dan kemandirian belajar siswa masih rendah.

Akibat pembelajaran daring tahun-tahun sebelumnya berimbas langsung terhadap kemampuan berhitung siswa. Sebagian besar siswa SMP kelas VII masih kurang terampil dalam menentukan hasil perkalian maupun pembagian. Bahkan untuk menghitungnya masih tergantung dengan 10 jari dan membutuhkan waktu yang lama untuk bisa menentukan hasilnya. Kenyataan tersebut menujukkan bahwa keterampilan dasar matematika yang seharusnya dikuasai di SD masih sangat kurang. Disimpulkan bahwa, penguasaan materi prasyarat oleh siswa masih rendah.

Kemampuan koneksi matematis awal dalam penelitian ini diperoleh berdasarkan hasil tes pada materi di semester gasal pada Kompetensi Dasar (KD) 3.1dan 4.1 bilangan bulat dan pecahan, KD 3.2 dan 4.2 himpunan, serta KD 3.3 dan 4.3 bentuk aljabar, persamaan, dan pertidaksamaan linear satu variabel. Kemampuan koneksi matematis awal siswa diukur menurut aspek koneksi antartopik matematika, matematika dengan bidang studi yang lain, dan matematika dengan masalah sehari-hari/dunia nyata. Hasilnya, kemampuan memecahkan masalah berkaitan dengan ketiga aspek tersebut masih rendah. Berdasarkan kenyataan tersebut disimpulkan bahwa kemampuan literasi, representasi, dan kemampuan koneksi matematis siswa masih rendah.

Rendahnya kemampuan literasi dan representasi matematis siswa ditunjukkan dengan siswa masih kesulitan menemukan dan mengambil informasi eksplisit dari soal yang diberikan. Rendahnya kemampuan representasi matematis ditunjukkan dengan rendahnya kemampuan siswa menyatakan ide-ide yang ditemukan. Kenyataannya, hanya sebagian kecil siswa dapat menulis kembali ide yang ditemukan dari kalimat-kalimat pada soal. Pada soal yang belum bisa dikerjakan, siswa memilih mengosongi jawaban. Bentuk-bentuk representasi

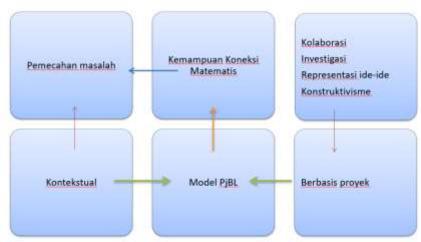
Edukatif: Jurnal Ilmu Pendidikan Vol 5 No 6 Desember 2023

digolongkan menjadi representasi visual (gambar, diagram, grafik, atau tabel), representasi simbolik (pernyataan/notasi matematik, numerik/simbol aljabar), dan representasi verbal (teks tertulis/kata-kata) (Ratnasari et al., 2018). Kemampuan representasi dalam belajar matematika seperti menggambar grafik maupun simbol akan membantu komunikasi dan berpikir siswa (Ramziah, 2016); (Yuanita et al., 2018).

Koneksi matematis adalah keterkaitan antara konsep-konsep matematika yang berhubungan dengan matematika itu sendiri dan keterkaitan antara matematika dengan kehidupan sehari-hari. Tiga aspek koneksi matematis menurut kriteria (NCTM., 2000) yaitu: 1) Aspek koneksi antartopik matematika, aspek ini dapat membantu siswa menghubungkan konsep-konsep matematika untuk menyelesaikan suatu situasi permasalahan matematika, 2) Aspek koneksi matematika dengan disiplin ilmu yang lain, aspek ini menunjukkan bahwa matematika selain sebagai suatu disiplin ilmu, juga dapat berguna untuk menyelesaikan suatu permasalahan yang berkaitan dengan bidang studi lainnya. 3) Aspek koneksi dengan dunia nyata siswa/kehidupan sehari-hari. Pada aspek ini matematika dapat bermanfaat untuk menyelesaikan suatu permasalahan di kehidupan sehari-hari. Melalui penekanan keterkaitan antara ide-ide matematika, siswa belajar tidak hanya matematika tetapi juga tentang kegunaan matematika. Rendahnya kemampuan koneksi matematis ditunjukkan dengan sebagian kecil siswa yang sudah dapat menuliskan ide-ide yang ditemukan, mereka belum mampu menghubungkan ide-ide dan menyatakannya dengan benar.

Koneksi matematis merupakan hubungan antara dua representasi yang ekuivalen, dapat diperoleh dari dua bentuk representasi yang berbeda. Fungsi, matrik, algoritma, grafik, variable, perbandingan dan transformasi merupakan ide-ide metamatis yang menjadi konektor ketika mempelajari topik-topik matematika dengan spectrum yang luas. Rasio atau perbandingan berguna hampir di setiap level pembelajaran matematika, rasio dapat menjadi konektor siswa dengan matematika . Koneksi antara ide-ide matematis dapat dinyatakan ke dalam kalimat matematika/model matematika, dalam bentuk persamaan, maupun pertidaksamaan. Ide-ide yang berkaitan ditulis dengan menggunakan tanda operasi tambah, kurang, kali, bagi, atau pangkat.

Menurut (Nägele et al., 2014), koneksi matematis merupakan "alat pemecahan masalah". Brodie (2010), menyatakan bahwa koneksi merupakan bagian penting dalam proses penalaran untuk dapat memecahkan masalah. Meningkatkan kemampuan koneksi matematis menjadi kunci untuk meningkatkan kemampuan siswa dalam pemecahan masalah. Karena itu, fokus penelitian ini adalah meningkatkan kemampuan koneksi matematis melalui penerapan model pembelajaran *Project Based Learning* (PjBL).


Model PjBL adalah model pembelajaran yang melibatkan keaktifan peserta didik dalam memecahkan masalah. PjBL menurut pendapat beberapa ahli dirangkum seperti berikut. Menurut (Gaer, 1998), PjBL memiliki potensi yang besar untuk membuat pengalaman belajar yang menarik dan bermakna bagi peserta didik untuk memasuki lapangan kerja. Melalui PjBL oleh (Thomas, 2000) menyebutkan dapat membantu peserta didik agar memiliki kreativitas berpikir, pemecahan masalah, dan interaksi serta membantu dalam penyelidikan yang mengarah pada masalah-masalah nyata. Menurut (Johnson, 2002), PjBL mampu menghubungkan muatan akademik dengan konteks dunia nyata. (Goodman et al., 2010) mendefinisikan PjBL merupakan pendekatan pengajaran yang dibangun di atas kegiatan pembelajaran dan tugas nyata yang memberikan tantangan bagi peserta didik yang terkait dengan kehidupan sehari-hari untuk dipecahkan secara berkelompok. Jadi PjBL menerapkan pembelajaran kontekstual. Pengajaran dan pembelajaran kontekstual merupakan konsepsi yang membantu guru mengaitkan konten mata pelajaran dengan situasi dunia nyata.

Penerapan model PjBl, materi yang dipelajari merupakan topik yang bersifat kontekstual dan didesain menjadi sebuah proyek/karya yang menarik. Bahan, alat, dan media untuk membuat proyek diusahakan tersedia di lingkungan sekitar. Penilaian yang diterapkan menggunakan penilaian autentik. Guru menyadari, pembahasan masalah kontekstual dalam pembelajaran sebelumnya masih kurang. Pada penelitian ini, melalui penerapan model pembelajaran PjBl, diharapkan guru dapat mengoptimalkan pembelajaran materi perbandingan yang sarat dengan topik bersifat kontekstual. Topik kontekstual dibahas meliputi kaitannya antartopik matematika, matematika dengan bidang studi yang lain, dan matematika dalam masalah sehari-hari.

Penyajian materi dengan melibatkan siswa bekerja dalam situasi nyata dan dipraktikkan oleh siswa. Kegiatan ini dapat menstimulasi proses berpikir siswa, sehingga siswa menggunakan konsep matematika untuk menyelesaikan berbagai permasalahan kontekstual.

Berdasarkan pendapat (Mulyasa, 2014), sintaks model PjBL pada penelitian ini dilakukan seperti berikut. Langkah 1) penentuan pertanyaan mendasar, guru menyampaikan topik dan mengajukan pertanyaan bagaimana cara memecahkan masalah. Peserta didik mengajukan pertanyaan mendasar apa yang harus dilakukan terhadap topik/pemecahan masalah. Langkah 2) mendesain perencanaan proyek, guru memastikan setiap peserta didik dalam kelompok memilih dan mengetahui prosedur pembuatan proyek/produk yang akan dihasilkan. Langkah 3) menyusun jadwal, guru dan peserta didik membuat kesepakatan tentang jadwal pembuatan proyek (tahapantahapan dan pengumpulan). Langkah 4) memonitor peserta didik dan kemajuan proyek, guru memonitor keaktifan peserta didik selama melaksanakan proyek dan mengatasi jika mengalami kesulitan. Langkah 5) menguji hasil, guru merancang prototipe proyek, menyatukan peserta didik, mengukur ketercapaian standar. Langkah 6) evaluasi pengalaman belajar, guru memandu proses presentasi proyek, menanggapi hasil, selanjutnya guru dan peserta didik merefleksi/ membuat kesimpulan.

Melalui penerapan model pembelajaran PjBL diharapkan dapat mengurangi kesenjangan antara harapan dengan kenyataan, semula kemampuan koneksi matematis siswa rendah menjadi meningkat, guru dapat mengoptimalkan keterlibatan siswa dalam belajar secara kontekstual, dan siswa mampu menyelesaikan permasalahan kontekstual dengan konsep matematika yang benar. Praktiknya, model PjBL mempunyai banyak kelebihan. Kelebihan model PjBL menurut (Daryanto & Rahardjo, 2012) di antaranya: meningkatkan motivasi belajar peserta didik untuk belajar, meningkatkan kemampuan pemecahan masalah, membuat peserta didik menjadi lebih aktif dan berhasil memecahkan problem-problem kompleks, meningkatkan kolaborasi, mendorong peserta didik untuk mengembangkan dan mempraktikkan keterampilan komunikasi, meningkatkan keterampilan peserta didik dalam mengelola sumber, memberikan pengalaman kepada peserta didik pembelajaran dan praktik dalam mengorganisasi proyek, menyediakan pengalaman belajar yang melibatkan peserta didik secara kompleks dan dirancang untuk berkembang sesuai dengan dunia nyata, membuat suasana belajar menjadi menyenangkan sehingga peserta didik maupun pendidik menikmati proses pembelajaran.



Gambar 1. Kerangka Berpikir

Kaitan antara penerapan model PjBL dengan KKM dituangkan menjadi kerangka berpikir dalam penelitian ini, seperti pada Gambar 1. Pembelajaran dengan model PjBL bersandar pada ide bahwa siswa membangun pengetahuannya sendiri (konstruktivistik). Model PjBl memungkinkan siswa belajar dalam kelompok dapat bertukar ide dengan temannya, merupakan suatu bentuk pembelajaran individu. Proses tersebut sangat dimungkinkan dapat membantu siswa mengenali ide-ide dan menghubungkan ide-ide melalui diskusi dengan temannya. Melalui PjBL pembelajaran dapat dikaitkan masalah nyata baik berkaitan dengan bidang

2410 Upaya Meningkatkan Kemampuan Koneksi Matematis Siswa melalui Pembelajaran dengan Model Project Based Learning - Sumarsih

DOI: https://doi.org/10.31004/edukatif.v5i6.5559

studi lain maupun masalah sehari-hari. Jadi kemampuan koneksi matematis kaitannya antartopik matematika dapat dikembangkan melalui model PjBL.

Berdasarkan kerangka berpikir di atas dapat dirumuskan hipotesis tindakan dalam penelitian ini. Diduga pembelajaran dengan model *Project Based Learning* (PjBL) dapat meningkatkan kemampuan koneksi matematis siswa.

#### **METODE**

Desain penelitian ini menggunakan model Kemmis dan Taggart dalam dua siklus. Tiap siklus dengan tahapan perencanaan, tindakan, pengamatan, serta refleksi. Persiapan dilakukan dengan pemetaan materi dan menyusun indikator dan soal untuk mengukur Kemampuan Koneksi Matematis (KKM), pengumpulan data KKM awal, dan penyusunan Rencana Pelaksanaan Pembelajaran (RPP). Tahap perencanaan dilakukan penyiapan RPP, Lembar Kerja Siswa (LKS), lembar catatan guru, lembar pengamatan, instrumen angket terbuka, daftar hadir, dan daftar nilai. Tindakan dilakukan dengan menerapkan model pembelajaran *Project Based Learning* (PjBL). Pengamatan dibantu oleh observer fokus pada aktivitas siswa dalam pembelajaran. Refleksi dilakukan untuk mengetahui kekurangan dan kelebihan pembelajaran yang telah dilakukan, sebagai dasar untuk melakukan perbaikan dan modifikasi pada tindakan berikutnya.

Penelitian dilaksanakan di SMP Negeri 1 Masaran, Sragen pada semester genap tahun pelajaran 2021/2022. Subjek penelitian adalah siswa kelas VII, diambil satu kelas VII E. Pengumpulan data dilakukan melalui catatan guru, pengamatan, dokumentasi kegiatan, tes tertulis, dan angket terbuka. Catatan guru dilakukan pada setiap pertemuan. Guru mencatat keterlaksanaan pembelajaran, aktivitas siswa, dan kesan guru dalam pembelajaran. Pengamatan dilakukan fokus pada keaktifan siswa, kemauan bertanya, dan keberhasilan proyek. Dokumentasi pelaksanaan pembelajaran berupa foto-foto kegiatan dalam pembelajaran, hasil diskusi, dan pekerjaan siswa. Soal tes uraian disusun berdasarkan aspek, indikator, dan pemetaan materi tes untuk mengukur Kemampuan Koneksi Matematis (KKM) siswa. Angket terbuka pada siswa dilakukan untuk mengetahui pengalaman belajar yang diperoleh siswa dalam pembelajaran.

Kemampuan Koneksi Matematis (KKM) pada penelitian ini dibedakan dalam tiga aspek: koneksi antartopik matematika, koneksi dengan disiplin ilmu lain, dan koneksi dengan duhasil diskunia nyata. Ketiga aspek tersebut diukur dalam lima indikator. Indikator yang diukur pada aspek koneksi antartopik matematika adalah siswa dapat mengenali ide-ide matematis dengan menyatakan dalam bentuk representasi verbal, simbolik, atau visual yang ekuivalen dari konsep yang sama (R1), siswa dapat menghubungkan ide-ide matematis dari berbagai representasi yang ekuivalen (R2), dan menggunakan koneksi matematis antartopik matematika ke dalam menyelesaikan masalah (R3). Indikator pada aspek koneksi dengan disiplin ilmu lain adalah mengenal dan mengaplikasikan konsep-konsep matematika ke luar matematika (R4). Indikator pada aspek koneksi dengan dunia nyata adalah mengenal dan mengaplikasikan konsep-konsep matematika ke menyelesaikan masalah sehari-hari (R5).

Analisis data dilakukan menggunakan analisis kualitatif deskriptif dengan langkah-langkah seperti berikut. 1) Merekap catatan guru untuk keperluan perbaikan pelaksanaan pembelajaran, perbaikan sikap siswa, dan untuk pengelolaan kelas. 2) Merekap checklist hasil pengamatan dan ditabulasi secara manual. 3) Menghitung skor total Kemampuan Koneksi Matematis (KKM) siswa berdasarkan hasil ulangan harian dan mengkategorikan hasilnya menurut (Azwar, 2012) termasuk kategori rendah X < 33,3, sedang  $33,3 \le X < 66,7$ , dan tinggi  $X \ge 66,7$ . 4) Menganalisis nilai ulangan harian dengan cara membandingkan dengan data sebelumnya untuk mengetahui ada atau tidaknya peningkatan setelah dilakukan tindakan. Pembandingan dalam hal pencapaian nilai terendah, nilai tertinggi, rata-rata kelas/daya serap kelas, dan ketuntasan belajar secara klasikal. 5) Indikator keberhasilan siswa dalam belajar ditentukan seperti berikut. Siswa dinyatakan tuntas jika telah mencapai atau melampaui batas kriteria ketuntasan minimal 71. Suatu kelas dinyatakan tuntas belajarnya

2411 Upaya Meningkatkan Kemampuan Koneksi Matematis Siswa melalui Pembelajaran dengan Model Project Based Learning - Sumarsih DOI: https://doi.org/10.31004/edukatif.v5i6.5559

jika dalam kelas tersebut terdapat  $\geq 85\%$  siswa telah tuntas belajarnya. Tindakan dinyatakan berhasil secara signifikan, jika rerata kelas yang dicapai termasuk kategori tinggi.

### HASIL DAN PEMBAHASAN

#### Hacil

# Kemampuan Koneksi Matematis Awal Siswa Kelas VII E

Melalui Pembelajaran Tatap Muka Terbatas (PTMT), guru sudah menerapkan pendekatan kontekstual. Pembahasan permasalahan kontekstual sehari-hari sudah diberikan oleh guru melalui video pembelajaran yang telah disiapkan oleh guru. Namun, penugasan berbasis proyek belum diterapkan oleh guru. Tugas-tugas dan ulangan harian yang diberikan oleh guru masih sebatas pengiriman jawaban siswa melalui google form yang diunggah pada aplikasi google site. Siswa hanya mengirimkan jawaban akhir saja dengan memilih salah satu jawaban dari soal bentuk pilihan ganda.

Kemampuan koneksi matematis awal diperoleh berdasarkan hasil tes pada materi di semester gasal. Koneksi antartopik matematika ditunjukkan pada materi bilangan dan keliling serta luas bangun datar dikaitkan Persamaan Linear Satu variabel (PLSV) dan Pertidaksamaan Linear Satu variabel (PtLSV). Koneksi dengan disiplin ilmu lain adalah himpunan dengan PPKN, bilangan negatif dengan proses pencairan (IPA), dan bilangan dengan perbedaan waktu berdasarkan pembagian waktu GMT (IPS). Koneksi dengan dunia nyata pada penghitungan umur, bilangan (FPB) pada pembentukan kelompok, himpunan dengan kegemaran, dan bentuk aljabar dengan kuantitas benda.

Tabel 1. Nilai Kondisi Awal (KKM Awal)

| No | Indikator       | Rerata Kelas | Kategori |
|----|-----------------|--------------|----------|
| 1  | KKM Awal        | 16           | Rendah   |
|    | a. R1           | 30           | Rendah   |
|    | b. R2           | 8            | Rendah   |
|    | c. R3           | 5            | Rendah   |
|    | d. R4           | 29           | Rendah   |
|    | e. R5           | 9            | Rendah   |
| 2  | Nilai Tertinggi | 69           |          |
| 3  | Nilai Terendah  | 0            |          |
| 4  | Nilai ≥ 71      | 0 (0%)       |          |
|    |                 |              |          |

Seperti pada Tabel 1, rerata Kemampuan Koneksi Matematis (KKM) awal dicapai siswa kelas VII E adalah 16. Nilai KKM awal siswa belum ada yang mencapai batas ketuntasan minimal. Tampak juga rerata kelas pada tiap indikator masih rendah. Didominasi pencapaian sangat rendah pada 3 indikator R2, R3, dan R5. Kemampuan awal siswa sangat rendah dalam menghubungkan ide-ide matematis dari berbagai representasi yang ekuivalen, menggunakan koneksi matematis antartopik matematika ke dalam menyelesaikan masalah, serta mengenal dan mengaplikasikan konsep-konsep matematika ke menyelesaikan masalah sehari-hari.

Catatan guru terhadap pekerjaan siswa dalam mengerjakan soal pretes diuraikan seperti berikut. Sebagian besar siswa tidak menuliskan ide-ide matematis yang bisa diperoleh dari soal. Ide-ide baik dalam bentuk verbal (kata-kata), simbol, maupun secara visual/gambar sangat minim pada jawaban siswa. Sebagian besar siswa juga belum bisa menuliskan koneksi matematis yang digunakan untuk menyelesaikan soal-soal. Bahkan jawaban siswa kosong atau hanya jawaban akhir saja pada soal-soal dikaitkan dengan materi mata pelajaran lain maupun masalah sehari-hari. Hanya 3 siswa sudah menuliskan ide-ide dalam jawabannya, dapat menyelesaikan sebagian soal kaitannya dengan mata pelajaran lain, dan sebagian soal kaitannya dengan masalah sehari-hari. Fakta-fakta tersebut menunjukkan masih sangat rendahnya kemampuan koneksi matematis siswa, ini menjadi alasan pentingnya diadakan tindakan kelas.

### Hasil Penelitian Tindakan I

Tindakan I dilaksanakan pada materi perbandingan senilai. Materi tertuang pada Kompetensi Dasar (KD) 3.4 dan 4.4. KD 3.4 menjelaskan rasio dua besaran (satuannya sama dan berbeda) dengan fokus pada faktor skala dan proporsi, kecepatan dan debit. KD 4.4 menyelesaikan masalah yang berkaitan dengan rasio dua besaran (satuannya sama dan berbeda) dengan fokus pada faktor skala dan proporsi, kecepatan dan debit.

Tindakan I pembelajaran difokuskan pada materi membandingkan dan perbandingan senilai. Pembelajaran dilaksanakan menggunakan pendekatan kontekstual dengan model Project Based Learning (PjBL). Pembelajaran dilaksanakan dalam 4 pertemuan. Berbagai Lembar Kerja Siswa (LKS) dan media sebagai bahan proyek telah disiapkan. Penugasan proyek diberikan, baik dalam mendiskusikan materi maupun dalam latihan soal. LKS juga selalu disertai media kontekstual maupun bahan yang membantu tugas proyek siswa pada topik matematika, topik di luar matematika, maupun masalah sehari-hari/dunia nyata.

Deskripsi hasil penelitian Tindakan I diuraikan berdasarkan Rencana Pelaksanaan Pembelajaran (RPP) dan hasil pengumpulan data. Pengumpulan data dilakukan melalui catatan guru, checklist hasil pengamatan oleh pengamat, hasil ulangan harian I, dan hasil angket terbuka pada siswa.

Pembelajaran pada pertemuan I siswa diajak untuk dapat membedakan perbandingan antara dua satuan, merupakan perbandingan senilai atau perbandingan berbalik nilai. Proyek siswa adalah menyelesaikan LKS 1. Bahan proyek berupa beberapa bolpen sejenis, sejumlah permen, dan lembar LKS 1 yang dibagikan ke tiap kelompok. Melalui praktik dan diskusi I, tiap kelompok diminta melengkapi tabel perbandingan antara banyak bolpen sejenis yang dibeli dengan harganya dan menggambar grafiknya. Pada praktik dan diskusi II, tiap kelompok diminta melengkapi tabel perbandingan antara banyak anak dengan banyak permen yang diterima jika tiap anak mendapat bagian sama banyaknya. Pada kegiatan tersebut guru memonitor dan membantu kelompok yang mengalami kesulitan.

Saat pembelajaran guru memonitor dan membantu kelompok yang mengalami kesulitan. Kesan yang diterima oleh guru pada pembelajaran ini adalah siswa sangat antusias dan dapat mengerjakan proyek dengan mudah. Komunikasi guru dengan siswa sangat baik. Siswa dengan berbagai karakter berani bertanya kepada guru. Monitoring guru dengan berkeliling ke kelompok-kelompok efektif mengatasi kesulitan siswa.

Menurut catatan guru, sebagian besar siswa dapat merepresentasikan ide ke dalam tabel dengan baik. Ada kelompok yang belum bisa menyelesaikan tabel, namun melalui sedikit penjelasan dan pertanyaan diajukan ke siswa akhirnya tabel I dan II bisa segera diselesaikan. Representasi ide dengan grafik perlu penjelasan detail terutama untuk menentukan titik-titik dalam sumbu ordinat masih banyak yang salah.

Berdasarkan hasil pada kedua tabel, siswa dalam kelompok menyelidiki untuk dapat menemukan perbandingan nilai pada kedua kolom dan membedakan bentuk grafiknya. Tabel dan grafik berfungsi sebagai bahan penyelidikan siswa. Representasi data antarkolom sangat membantu siswa untuk membuat koneksi matematis. Saat merumuskan kesimpulan, setiap kelompok sangat membutuhkan bimbingan dari guru. Kesimpulan diarahkan untuk menemukan jenis perbandingan, merupakan perbandingan senilai atau perbandingan berbalik nilai. Setelah pembelajaran diakhiri, tiap kelompok mengumpulkan tugas proyek LKS 1. Sebagian kelompok masih kosong pada bagian kesimpulan.

Pembelajaran pada pertemuan II siswa diajak memahami perbandingan senilai pada topik-topik matematika tentang kecepatan, debit, dan faktor skala. Kegiatan yang dilakukan siswa yaitu: 1) menyelesaikan masalah perbandingan dua besaran berbeda berkaitan dengan kecepatan dan debit; 2) menyelesaikan masalah kaitannya perbandingan senilai dengan faktor skala pada dilatasi.

Pembelajaran diawali dengan guru memberikan apersepsi tentang tangga satuan panjang, massa, volume, dan waktu. Guru mengajukan pertanyaan bagaimana membandingkan dua besaran dengan satuan panjang, massa, dan waktu sama/berbeda. Beberapa siswa dapat memberikan penjelasan, dengan cara diubah ke satuan yang sama. Masalah kecepatan berkaitan dengan satuan panjang/jarak dan waktu. Untuk membandingkan, masing-masing satuan jarak dan waktu diubah ke satuan yang sama. Masalah debit berkaitan dengan satuan

volume/isi dan waktu. Untuk membandingkan, masing-masing satuan isi dan waktu diubah ke satuan yang sama. Hasil pengamatan, seorang siswa dapat menyelesaikan permasalahan kecepatan menurut caranya sendiri.

Faktor skala berkaitan dengan dilatasi/perbesaran pada materi transformasi. Dilatasi/perbesaran dikenalkan ke siswa melalui gambar segitiga dan hasil perbesarannya. Faktor skala dijelaskan, merupakan perbandingan antara panjang sisi-sisi bersesuaian pada segitiga dengan hasil perbesarannya. Kelompok menyelidiki panjang sisi-sisi segitiga dan hasil perbesarannya. Kemudian menentukan faktor skalanya.

Catatan guru pada pembelajaran pertemuan II adalah: siswa sudah mengenal tangga satuan panjang, massa, volume/isi serta satuan waktu, siswa sudah dapat menentukan cara membandingkan dua besaran dengan satuan beda, prinsip membandingkan kecepatan dan debit sudah dipahami oleh siswa, melalui gambar segitiga dan hasil dilatasinya, siswa menyelidiki panjang sisi kedua segitiga dan dapat membandingkan panjang sisi-sisi yang bersesuaian. Di sinilah siswa mengenal tentang faktor skala.

Pembelajaran pada pertemuan III, siswa melaksanakan tiga kegiatan yaitu: mengukur jarak dua tempat pada peta *google map* dan menentukan jarak sebenarnya, membandingkan suhu pada skala termometer Celcius, Fahrenheit, Reamur, dan Kelvin, serta praktik berkaitan dengan proporsi melalui berlatih menentukan banyak bahan membuat agar-agar.

Berdasarkan catatan guru, tiga kegiatan dapat dilaksanakan sesuai rencana. Kegiatan pertama, mengukur jarak dua tempat pada peta google map dan menentukan jarak sebenarnya. Penggunaan peta kota Masaran pada google map sangat membantu siswa dalam mengenal bentuk lain menampilkan skala. Sebagian besar kelompok menunjukkan kerjasama dengan baik. Siswa dibimbing untuk membaca skala pada google map. Hasilnya siswa dapat dengan mudah menentukan jarak sebenarnya antara dua tempat. Kegiatan kedua, siswa dikenalkan secara kontekstual perbedaan suhu pada skala termometer dan Fahrenheit menggunakan alat cek suhu thermometer infrared K3 + Tripod. Gambar 4 skala termometer membantu siswa menemukan perbandingan suhunya. Kegiatan ketiga pembelajaran tentang proporsi dikaitkan dengan permasalahan sehari-hari. Disediakan bahan membuat agar-agar, secara kontekstual siswa praktik menentukan banyak bahan untuk membuat agar-agar. Proses ini sangat membantu siswa memahami tentang proporsi. Siswa antusias melaksanakan kegiatan ini.

Pembelajaran pada pertemuan IV fokus pada pendalaman soal-soal tentang perbandingan senilai. Siswa dilatih untuk bisa merepresentasikan ide-ide yang diperoleh dari soal, menemukan koneksi matematisnya, dan menyelesaikan masalah/soal perbandingan senilai dengan benar. Guru menekankan pentingnya pemahaman bahasa pada soal baik pernyataan maupun pertanyaannya, untuk mendapatkan informasi yang digunakan dalam menyelesaikan soal. Guru membimbing siswa agar dapat membuat representasi matematis dalam bentuk tabel atau dalam bentuk korespondensi satu-satu. Pada tahap ini siswa membutuhkan contoh berulang-ulang, merupakan bagian yang sulit dipahami oleh siswa. Karena cara tersebut merupakan hal yang baru dikenal oleh siswa.

Berdasarkan data pada tabel atau korespondensi satu-satu, guru mengarahkan siswa untuk mendiskusikan koneksi matematis yang digunakan pada perbandingan senilai, masing-masing komponen dikali/dibagi bilangan yang sama. Guru mengenalkan penggunaan rumus pada perbandingan senilai:

$$x_1 \to y_1$$
$$x_2 \to y_2$$

Bentuk perbandingannya dinyatakan dengan  $\frac{x_1}{x_2} = \frac{y_1}{y_2}$ . Penyelesaiannya menggunakan prinsip mengubah ke pecahan senilai, antara pembilang dengan penyebut masing-masing dikali/dibagi bilangan yang sama atau hasil kali silangnya sama. Cara lain koneksi matematis ditentukan dengan mencari pengali/pembagi  $x_1$  sehingga diperoleh  $y_1$ , kemudian diterapkan pada  $x_2$  untuk mendapatkan  $y_2$ .

### Hasil Pengamatan dalam Pembelajaran Tindakan I

Pengamat mengamati keaktifan siswa, kemauan bertanya, dan keberhasilan proyek dalam melaksanakan praktik dan diskusi. Hasil pengamatan "baik" selama 4 pertemuan seperti pada Tabel 2.

Tabel 2. Rekap Hasil Pengamatan dalam Pembelajaran Tindakan I

| Pertemuan ke- | Keaktifan | Kemauan Bertanya | Keberhasilan Proyek |
|---------------|-----------|------------------|---------------------|
| 1             | 72%       | 66%              | 63%                 |
| 2             | 59%       | 59%              | 37%                 |
| 3             | 94%       | 81%              | 88%                 |
| 4             | 78%       | 75%              | 63%                 |
| Rerata        | 76%       | 70%              | 63%                 |
| Kategori      | Tinggi    | Tinggi           | Sedang              |

# Hasil Ulangan Harian Tindakan I

Pada pertemuan berikutnya diadakan ulangan harian I, sebagai hasil tindakan siklus I. Kemampuan koneksi matematis pada Tindakan I diukur berdasarkan hasil tes pada materi perbandingan senilai. Koneksi antartopik matematika materi perbandingan senilai kaitannya dengan aritmetika sosial, perhitungan skor dan nilai, dan membandingkan kecepatan/debit. Koneksi dengan disiplin ilmu lain adalah skala pada peta (IPS), suhu pada 4 skala termometer (IPA), dan skala pada denah (Teknik). Koneksi dengan dunia nyata adalah proporsi pada resep masakan, besar upah pekerja menurut lamanya bekerja, banyak bahan bakar menurut jarak tempuh perjalanan, dan banyak kata menurut lamanya mengetik.

Analisis hasil ulangan I, dirangkum pada Tabel 3. Tampak pada Tabel 3, hasil Tindakan I diperoleh rerata Kemampuan Koneksi Matematis (KKM) siswa masih rendah. Didominasi pencapaian masih rendah pada indikator R4 dan R5. Kemampuan siswa rendah dalam mengenal dan mengaplikasikan konsep-konsep matematika ke luar matematika dan untuk menyelesaikan masalah sehari-hari.

|    | Tabel 3. Hasil Ulangan Harian I |              |          |  |  |  |
|----|---------------------------------|--------------|----------|--|--|--|
| No | Indikator                       | Rerata Kelas | Kategori |  |  |  |
| 1  | KKM                             | 32           | Rendah   |  |  |  |
|    | R1                              | 42           | Sedang   |  |  |  |
|    | R2                              | 38           | Sedang   |  |  |  |
|    | R3                              | 45           | Sedang   |  |  |  |
|    | R4                              | 11           | Rendah   |  |  |  |
|    | R5                              | 28           | Rendah   |  |  |  |
| 2  | Nilai Tertinggi                 | 81           |          |  |  |  |
| 3  | Nilai Terendah                  | 0            |          |  |  |  |
| 4  | Nilai ≥ 71                      | 2            |          |  |  |  |

Angket terbuka diajukan kepada 5 dari 32 siswa di kelas 7E. Pengalaman bermakna (berkesan) siswa dalam pembelajaran dikenalkan jenis perbandingan dilakukan dengan praktik dan diskusi menggunakan sejumlah bolpoin sejenis dan permen diringkas seperti berikut. 1) Pemilihan bahan untuk praktik harus sejenis tetapi beda warna dapat menimbulkan persepsi nilai perbandingan yang berbeda. 2) Siswa dapat mengenal jenis perbandingan. 3) Anak-anak senang karena mendapat bolpoin dan permen setelah pembelajaran. 4) Dapat dipraktikkan.

Pengalaman bermakna (berkesan) siswa saat membuat kesimpulan menggunakan data pada tabel dan grafik ringkasannya seperti berikut. 1) Lebih mudah membuat kesimpulan menggunakan tabel. 2) Dengan tabel mudah disimpulkan lebih rinci. 3) Penyampaian materi secara runtut dan dapat dipahami.

Ringkasan pengalaman bermakna siswa dalam pembelajaran perbandingan senilai dikaitkan dengan topik matematika lainnya seperti kecepatan, debit, dan dilatasi seperti berikut. 1) Menggunakan dua atau lebih objek yang dibandingkan. 2) Kecepatan berkaitan dengan jarak, waktu, dan dan mengubah ke satuan yang sama. 3) Dapat mengetahui bahwa setiap topik matematika dapat berkaitan antara satu dengan lainnya, maka belajar matematika harus benar-benar dipahami, karena sangat berguna untuk pembelajaran di tingkat selanjutnya atau yang lebih tinggi. 4) Metode mengajar mudah dipahami.

Ringkasan pengalaman bermakna (berkesan) siswa dalam pembelajaran perbandingan senilai dikaitkan dengan materi mata pelajaran lain dan masalah sehari-hari seperti skala peta pada *google map*, suhu, dan resep membuat agar-agar seperti berikut. 1) Proporsi merupakan perbandingan bahan diterima sebagai formula. 2) Materi dari guru dijelaskan secara rinci dan dapat dipahami. 3) Mampu mempelajari perbandingan senilai. 4) Bisa membuat agar-agar dan makan bersama.

Jawaban tentang kelebihan dan kekurangan tugas pelaporan hasil praktik secara kelompok oleh siswa seperti berikut. Kelebihan: 1) Bekerja secara kelompok: pekerjaan menjadi menyenangkan, cepat selesai, banyak ide yang muncul, meminimkan kesalahan karena saling mengoreksi, persoalan terpecahkan karena kerjasama yang baik. 2) Pembelajaran menjadi lebih menyenangkan karena menggunakan objek/barang untuk melakukan praktik. 3) Melatih ketelitian waktu melakukan percobaan. Kekurangan: 1) Ada anggota yang tidak mau bekerja, cuma nitip nama, tidak mau ikut berdiskusi, dan ada yang egois kokoh pada pendiriannya. 2) Menjadi kurang konsentrasi dan lebih banyak ngobrol. 3) Memerlukan peralatan yang tidak selalu mudah diperoleh.

Angket tentang kebiasaan siswa dalam mengerjakan soal, hasilnya adalah 2 siswa selalu mengandalkan rumus, 0 siswa menggunakan nalar, 3 siswa kadang-kadang menggunakan rumus, kadang-kadang menggunakan nalar. Disimpulkan bahwa kebiasaan siswa dalam mengerjakan soal, utamanya adalah mengandalkan rumus, namun setengah bagiannya mau mencoba dengan menggunakan nalar.

#### Hasil Tindakan II

Tindakan II dilaksanakan pembelajaran pada Kompetensi Dasar (KD) 3.4 dan 4.4. KD 3.4 menjelaskan rasio dua besaran (satuannya sama dan berbeda) dengan fokus pada faktor skala dan proporsi, kecepatan dan debit. KD 4.4 menyelesaikan masalah yang berkaitan dengan rasio dua besaran (satuannya sama dan berbeda) dengan fokus pada faktor skala dan proporsi, kecepatan dan debit. Pembelajaran difokuskan pada materi perbandingan berbalik nilai.

Pembelajaran pada Tindakan II dilaksanakan dalam 2 pertemuan dengan menggunakan model Project Based-Learning (PjBL). Dilakukan dua modifikasi yaitu 1) pelaporan tugas proyek dibuat secara individu dan 2) pembahasan penyelesaian soal dengan cara menggunakan nalar dan rumus. Digunakan nalar dengan cara menunjukkan adanya koneksi antara dua komponen, dapat direpresentasikan dalam bentuk korespondennsi satu-satu atau dengan tabel. Selanjutnya penyelesaian soal menggunakan rumus. Sebelum dimulai pembelajaran kedua modifikasi disosialisasikan kepada siswa.

Deskripsi hasil penelitian Tindakan II diuraikan berdasarkan Rencana Pelaksanaan Pembelajaran (RPP) materi perbandingan berbalik nilai dan hasil pengumpulan data. Pengumpulan data dilakukan melalui catatan guru, checklist hasil pengamatan oleh pengamat, hasil ulangan harian II, dan hasil angket terbuka pada siswa.

Tugas proyek siswa pada Tindakan II pertemuan I adalah mengenal perbandingan berbalik nilai dan rumusnya, serta menyelesaikan soal-soal perbandingan berbalik nilai pada antartopik matematika. Guru mengingatkan kepada siswa, bahwa tugas pelaporan proyek adalah tanggung jawab individu. Perlu diperhatikan juga dalam menyelesaikan soal-soal. Siswa harus dapat merepresentasikan elemen-elemen yang diketahui dalam bentuk table atau dengan korespondensi satu-satu. Proses inilah siswa dilatih menggunakan nalar. Selanjutnya siswa diharapkan dapat menggunakan rumus untuk menyelesaikan soal tersebut.

Kegiatan awal yang dilakukan adalah memotong beberapa sedotan yang panjangnya sama dengan ukuran potongan berbeda. Panjang potongan dan banyaknya potongan direpresentasikan dalam table dan grafik. Siswa berdiskusi dan diarahkan untuk membandingkan data pada masing-masing kolom, data antarkolom, maupun antara tabel dengan grafik.

Dipilih data dua baris pada kolom panjang sedotan dan pada kolom banyak potongan. Siswa diajak membandingkan dua nilai, kemudian diminta memperhatikan nilai perbandingannya. Hasil tersebut digunakan untuk menemukan rumus perbandingan berbalik nilai. Bentuk rumus perbandingan dijelaskan dalam bentuk perbandingan dan persamaan perkalian.

Beberapa catatan guru selama pembelajaran seperti berikut. Siswa tidak mengalami kesulitan untuk merepresentasikan data matematis dalam bentuk tabel, karena mirip dengan praktik yang sudah dilakukan pada Tindakan I pertemuan ke-1. Siswa langsung dapat menerapkan tabel pembagi dan hasil bagi suatu bilangan. Kelemahan siswa dalam hal menggambar grafik, kesalahan dahulu masih terulang lagi. Skala pada sumbu ordinat dan kerapian kurang baik. Namun sifat grafik perbandingan berbalik nilai berupa garis lengkung sudah dapat ditunjukkan oleh siswa.

Data pada tabel sangat efektif membantu pembahasan tentang membandingkan dua nilai dan hasilkalinya pada perbandingan berbalik nilai, sehingga generalisasi/rumus mudah diterima oleh siswa. Kegiatan selanjutnya mendiskusikan cara menyelesaikan soal-soal kaitannya perbandingan berbalik nilai dengan topik matematika lainnya seperti aritmetika sosial dan bangun datar. Kegiatan mulai dari membuat representasi matematisnya berupa korespondensi satu-satu atau tabel, menentukan koneksinya, dan menyelesaikan soal. Kegiatan diakhiri dengan pengumpulan laporan proyek oleh masing-masing anggota kelompok/siswa.

Pembelajaran pada pertemuan II mendiskusikan LKS 5 tentang penyelesaian soal-soal berkaitan dengan perbandingan berbalik nilai pada mata pelajaran lain dan dunia nyata/masalah sehari-hari. Soal-soal yang didiskusikan berkaitan dengan mata pelajaran IPA: kecepatan – waktu, tekanan - luas, panjang lengan - massa pada jungkitan. Soal-soal pada masalah sehari-hari: banyak pekerja – waktu, massa – banyak kantong, banyak ternak-lama persediaan jika persediaan makanan tetap, besar beasiswa dan banyak siswa jika anggaran tetap.

Catatan guru selama pembelajaran seperti berikut. Sebagian besar siswa sudah dapat menuliskan representasi matematis yang sesuai dua satuan dalam bentuk korespondensi satu-satu. Siswa dapat menuliskan koneksi matematis dalam bentuk rumus atau hasilkali nilai dua satuan sama dan dapat menyelesaikan soal dengan baik. Pembelajaran diakhiri dengan pengumpulan laporan LKS 5 oleh tiap siswa.

# Hasil Pengamatan dalam Pembelajaran Tindakan II

Pengamat mengamati keaktifan siswa, kemauan bertanya, dan keberhasilan proyek dalam melaksanakan praktik dan diskusi. Hasil pengamatan "baik" selama 2 pertemuan seperti pada Tabel 4.

Tabel 4. Rekap Hasil Pengamatan dalam Pembelajaran Tindakan II

| Pertemuan ke- | Keaktifan | Kemauan Bertanya | Keberhasilan Proyek | Tugas Pelaporan |
|---------------|-----------|------------------|---------------------|-----------------|
| 1             | 84%       | 78%              | 75%                 | 91%             |
| 2             | 94%       | 91%              | 88%                 | 94%             |
| Rerata        | 89%       | 85%              | 82%                 | 93%             |
| Kategori      | Tinggi    | Tinggi           | Tinggi              | Tinggi          |

# Hasil Ulangan harian Tindakan II

Pada pertemuan berikutnya diadakan ulangan harian II sebagai hasil tindakan siklus II. Kemampuan koneksi matematis pada Tindakan II diukur berdasarkan hasil tes pada materi perbandingan berbalik nilai. Koneksi antartopik matematika adalah perbandingan berbalik nilai pada masalah pembagian, harga dengan banyak barang dari jumlah uang sama, dan luas potongan persegi panjang dengan banyaknya potongan dari persegi panjang yang sama. Koneksi dengan disiplin ilmu lain kaitannya antara kecepatan dengan waktu, besarnya tekanan dengan luas permukaan benda, dan jarak terhadap titik tumpu dengan massa anak pada permainan jungkitan. Koneksi dengan dunia nyata diantaranya adalah perbandingan berbalik nilai antara banyak pekerja dengan waktu, massa barang dengan banyak wadah, banyak ternak dengan waktu jika persediaan makanan tetap, dan besar santunan dengan banyak anak jika besar santunan tetap.

Hasil analisis dirangkum pada Tabel 5 berikut. Tampak pada Tabel 5, Rerata KKM siswa diperoleh termasuk dalam kategori tinggi. Demikian juga rerata pada indikator R1, R2, R3, dan R5 hasilnya termasuk kategori tinggi. Sedangkan pada indikator R4 hasilnya termasuk kategori sedang.

Tabel 5. Hasil Tindakan II

| No | Indikator | Rerata Kelas | Kategori |  |
|----|-----------|--------------|----------|--|
| 1  | KKM       | 73           | Tinggi   |  |

|   | a. R1           | 78  | Tinggi |
|---|-----------------|-----|--------|
|   | b. R2           | 86  | Tinggi |
|   | c. R3           | 72  | Tinggi |
|   | d. R4           | 51  | Sedang |
|   | e. R5           | 75  | Tinggi |
| 2 | Nilai Tertinggi | 100 |        |
| 3 | Nilai Terendah  | 44  | _      |

# Hasil Angket Terbuka Siswa Setelah Tindakan II

Praktik dan diskusi untuk mengenal perbandingan berbalik nilai melalui praktik memotong beberapa sedotan yang panjangnya sama dengan ukuran potongan berbeda. Pengalaman berkesan siswa adalah seperti berikut. 1) Pembelajaran terasa lebih mudah, lebih real, maka soal yang ada cepat terselesaikan dengan media yang ada. 2) Mampu mengetahui dan melakukan praktik perbandingan berbalik nilai dengan media sedotan dengan mudah dipahami dan dijelaskan secara rinci.

Rumus untuk perbandingan berbalik nilai dikenalkan dengan cara menggunakan data hasil praktik yang direpresentasikan dalam tabel dan grafik. Pengalaman berkesan siswa adalah seperti berikut. 1) Pembelajaran tidak monoton, lebih bervariasi, diajak, dan dibuka wawasan untuk berpikir dengan membaca tabel dan grafik yang tersaji. 2) Siswa mampu mengenal rumus perbandingan berbalik nilai. 3) Penyampaian materi pelajaran dijelaskan dengan runtut dan dapat dipahami.

Jawaban siswa dari pertanyaan "Apakah Anda merasa sudah memahami penjelasan guru, namun ketika mengerjakan soal masih kesulitan? Apa sebabnya, jelaskan!" ringkasannya adalah seperti berikut. Siswa sudah bisa memahami penjelasan guru, namun ketika mengerjakan soal masih kesulitan, karena belum terbiasa walaupun rumus yang digunakan sama, terkadang lupa rumus, atau tidak tahu caranya.

# Pembahasan

#### Pembahasan Tindakan I

Pembelajaran pada tindakan I dilaksanakan dengan menerapkan model *Project-Based Learning* (PjBL). Pekerjaan proyek menjadi faktor utama dalam proses pembelajaran. Berbagai kegiatan telah dipersiapkan guru dalam bentuk Lembar Kerja Siswa sebagai bahan panduan praktik dan diskusi.

Kemampuan Koneksi Matematis (KKM) siswa pada kondisi awal dibanding dengan hasil tindakan I, ditunjukkan seperti pada Tabel 6. Pada Tabel 6 dibedakan KKM secara keseluruhan maupun pada tiap indikatornya.

Tabel 6. Perbedaan KKM Kondisi awal dan Hasil Tindakan I

| No | Indikator       | Rerata Kelas |            |  |
|----|-----------------|--------------|------------|--|
|    |                 | Kondisi Awal | Tindakan I |  |
| 1  | KKM             | 16           | 32         |  |
|    | a. R1           | 30           | 42         |  |
|    | b. R2           | 8            | 38         |  |
|    | c. R3           | 5            | 45         |  |
|    | d. R4           | 29           | 11         |  |
|    | e. R5           | 9            | 28         |  |
| 2  | Nilai Tertinggi | 69           | 81         |  |
| 3  | Nilai Terendah  | 0            | 0          |  |
| 4  | Nilai ≥ 71      | 0 (0%)       | 2 (6%)     |  |

Ditunjukkan pada Tabel 6, terdapat peningkatan rerata KKM setelah Tindakan I dibanding pada kondisi awal, hasilnya masih dalam kategori rendah. Rerata pada tiap indikator terdapat peningkatan, kecuali pada indikator R4. Pada Tindakan I rerata indikator R4 hasilnya menurun dibanding pada kondisi awal.

Tugas proyek siswa diawali dengan praktik. Praktik sederhana dilakukan seperti menentukan harga beberapa bolpen sejenis dan membagi sejumlah permen kepada beberapa anak, masing-masing anak mendapat

bagian yang sama. Berdasarkan hasil angket terbuka kepada siswa, banyak pengalaman berkesan yang diperoleh siswa. Siswa berpendapat bahwa proyek yang dirancang oleh guru tersebut dapat dipraktikkan dan siswa dapat mengenal jenis perbandingan. Pembelajaran menjadi lebih menyenangkan karena menggunakan objek/barang untuk praktik. Untuk menanamkan konsep tentang perbandingan senilai, perlu diperhatikan dalam hal pemilihan bahan untuk praktik. Bahan ditentukan harus sejenis, baik bentuk maupun warna. Selain itu, siswa merasa senang karena mendapatkan bolpoin dan permen setelah pembelajaran.

Melalui tugas proyek siswa dapat mengkonstruksi sendiri pengetahuan dan keterampilan barunya (Rosmaini, 2023). Materi perbandingan dikaitkan dengan masalah perkalian dan pembagian. Melalui penggunaan bolpen sejenis dan sejumlah permen, pendekatan kontekstual dapat diterapkan dengan mudah. Senada dengan pendapat (Nurhadi, 2002), sebuah kelas dikatakan menggunakan pendekatan kontekstual, jika menerapkan tujuh komponen utama *contextual teaching and learning*, salah satunya adalah konstruktivistik (*constructivism*), mengembangkan pemikiran bahwa siswa akan belajar lebih bermakna dengan cara bekerja sendiri, menemukan sendiri, dan mengkonstruksi sendiri pengetahuan dan keterampilan barunya.

Pendapat Nurhadi senada dengan hasil angket terbuka siswa tentang kelebihan dan kekurangan tugas pelaporan hasil praktik secara kelompok. Bekerja secara kelompok menjadikan belajar lebih menyenangkan, banyak ide, dan pelaporan hasil praktik dapat diselesaikan karena adanya kerjasama yang baik. Namun, kenyataannya masih ada anggota yang tidak mau bekerja, cuma nitip nama, dan tidak mau ikut berdiskusi. Kondisi ini seperti tampak pada tabel 2, ketika kerjasama kelompok kurang baik pada pertemuan ke-2 dan ke-4 keberhasilan proyek kurang. Perilaku negatif tersebut perlu diatasi agar siswa menjadi lebih aktif dan hasil belajarnya lebih baik.

Representasi data hasil praktik dinyatakan dalam bentuk tabel dan grafik. Tabel dan grafik digunakan untuk melatih siswa menghubungkan dan membandingkan data pada tabel maupun bentuk grafiknya. Menurut catatan guru pada pembelajaran pertemuan I, siswa benar-benar dapat membandingkan beberapa kelompok data pada kolom yang sama, antarkolom, bahkan data antartabel. Hal ini mudah bagi siswa karena praktik yang dilakukan dikaitkan dengan permasalahan sehari-hari. Tabel dan grafik berfungsi sebagai bahan penyelidikan siswa. Hasil tersebut didukung dengan hasil angket terbuka. Siswa merasa lebih mudah membuat kesimpulan menggunakan tabel. Materi dapat dipelajari secara runtut dan dapat dipahami, serta kesimpulan dapat ditulis lebih rinci.

Tampak pada Tabel 6, setelah Tindakan I terdapat peningkatan rerata nilai pada indikator R1 dan R2. Hasil tersebut menunjukkan bahwa Tindakan I telah dapat dikembangkan kemampuan representasi matematis dan kemampuan koneksi matematis siswa. Terbukti KKM siswa meningkat dibanding pada kondisi awal. Senada dengan hasil penelitian (Yuanita et al., 2018), siswa dapat mengembangkan dan memperdalam pemahaman konsep matematis mereka dan hubungannya seperti membuat, membandingkan, dan menggunakan variasi representasi.

Berdasarkan catatan guru pada pembelajaran pertemuan II adalah siswa dapat menyatakan pendapatnya: untuk membandingkan dua kecepatan dan dua debit menggunakan prinsip dapat dibandingkan jika diubah ke satuan yang sama. Pengalaman ini menunjukkan bahwa siswa dapat menghubungkan konsep antartopik matematika untuk menyelesaikan masalah. Pernyataan tersebut didukung dengan hasil angket tebuka terhadap siswa. Siswa dapat memahami bahwa setiap topik matematika saling berkaitan dan harus benar-benar dipahami, karena sangat berguna untuk pembelajaran di tingkat yang lebih tinggi. Terbukti bahwa pada indikator R3 hasilnya meningkat.

Berdasarkan Tabel 6, tampak bahwa KKM pada indikator R4 hasilnya menurun. KKM pada indikator R5 hasilnya meningkat, namun masih dalam kategori rendah. Kemampuan siswa mengenal dan mengaplikasikan konsep-konsep matematika ke luar matematika/bidang studi lain mengalami penurunan. Kemampuan siswa mengenal dan mengaplikasikan konsep-konsep matematika ke permasalahan sehari-hari meningkat, namun hasilnya masih dalam kategori rendah. Hasil ini bertolak belakang dengan catatan guru pada pembelajaran

pertemuan III. Kenyataannya, siswa benar-benar mendapat pengalaman belajar yang menarik dan menyenangkan saat pembelajaran. Saat praktik siswa aktif bertanya dan dapat bekerjasama dengan sangat baik. Siswa dapat memahami konsep skala, perbandingan suhu, dan proporsi berkaitan dengan perbandingan senilai.

Namun, setelah dihadapkan pada soal siswa masih saja mengalami kebingungan. Tampak pada Tabel 2, keaktifan, kemauan bertanya, dan keberhasilan proyek mengalami penurunan pada pertemuan keempat ketika diadakan diskusi untuk menyelesaikan soal-soal. Hasil angket terbuka diperoleh bahwa, kebiasaan siswa dalam mengerjakan soal, utamanya adalah mengandalkan rumus. Hanya sebagian siswa mau mencoba dengan menggunakan nalar. Disimpulkan bahwa siswa mengalami kesulitan menerapkan prinsip dalam menyelesaikan soal. Senada dengan uraian (Cooney et al., 1975) (dalam Yusmin, 2017:2123), siswa dapat menyatakan suatu prinsip tetapi tidak dapat mengutarakan artinya, dan tidak dapat menerapkan prinsip tersebut. Masalah ini menjadi bahan evaluasi bahwa siswa masih harus diberi latihan lebih banyak lagi untuk menyelesaikan soal-soal, walaupun secara konseptual mereka sudah memahami.

### Refleksi Tindakan I

Berdasarkan deskripsi hasil Tindakan I dan pembahasannya dapat diuraikan kekurangan dan kelebihan dalam tindakan I seperti berikut. Kekurangan dalam tindakan I ini adalah rerata Kemampuan Koneksi Matematis (KKM) siswa adalah 32, merupakan hasil masih dalam kategori rendah. Rerata KKM tiap indikator hasilnya masih dalam kategori sedang/rendah. Rerata keberhasilan proyek dalam kategori sedang, masih ada anggota yang tidak mau bekerja, hanya titip nama, dan tidak mau ikut berdiskusi. Siswa dalam menyelesaikan soal masih mengalami kesulitan menerapkan prinsip, karena masih mengandalkan menggunakan rumus, bukan nalar.

Adapun kelebihan dalam Tindakan I ini adalah partisipasi siswa baik dalam praktik dan diskusi, ditunjukkan dengan rerata persentase keaktifan baik 76% dan kemauan bertanya baik mencapai 70%. Pendekatan kontekstual dapat diterapkan dan menyenangkan bagi siswa, karena menggunakan objek/barang untuk praktik. Proyek yang dirancang oleh guru dapat dipraktikkan dan siswa dapat mengenal jenis perbandingan. Monitoring guru dengan berkeliling ke kelompok-kelompok efektif mengatasi kesulitan siswa saat praktik dan diskusi (Masuddi et.al, 2022). Sintaks model pembelajaran *Project Based-Learning* (PjBL) dapat dilaksanakan dengan baik. KKM siswa pada Tindakan I meningkat dibanding pada kondisi awal. Pada Tindakan I dapat dikembangkan kemampuan representasi matematis dan KKM siswa. Lembar kerja siswa disusun sistematis, tugas proyek dapat dilaksanakan, dapat diperoleh data, dapat dibuat tabel dan grafik sebagai bahan diskusi, dan dapat dilakukan pembandingan.

Berdasarkan kekurangan dan kelebihan tindakan I di atas disimpulkan bahwa setiap tahapan model pembelajaran PjBL dapat dilaksanakan. Melalui penerapan model PjBL pada Tindakan I berhasil meningkatkan Kemampuan Koneksi Matematis (KKM) siswa, walaupun masih dalam kategori rendah. Rerata KKM naik 16 dari kondisi awal dan ketuntasan belajar secara klasikal meningkat 10% dari kondisi awal. Partisipasi siswa dalam praktik dan diskusi baik, namun rerata keberhasilan proyek 63%, masih dalam kategori sedang. Dengan demikian perlu diadakan tindakan selanjutnya.

### Revisi Tindakan I

Untuk melaksanakan Tindakan II, peneliti mengadakan revisi Tindakan I sebagai berikut. Perlu ditingkatkan keaktifan, kemauan bertanya, dan keberhasilan proyek siswa dalam praktik dan diskusi. Langkah yang digunakan adalah tugas pelaporan proyek pada Tindakan I secara kelompok direvisi menjadi tugas individu. Pada Tindakan I penyelesaian soal lebih dominan menggunakan nalar dengan menunjukkan koneksi antara dua komponen daripada menggunakan rumus. Tindakan I direvisi dengan penugasan proyek siswa diarahkan agar mereka dapat menemukan, mengingat, dan menggunakan rumus dengan benar, namun dalam prosesnya tetap menggunakan nalar.

### Pembahasan Tindakan II

Pembelajaran pada Tindakan II dilaksanakan dengan menggunakan model *Project Based-Learning* (PjBL), dengan modifikasi pelaporan tugas proyek dibuat secara individu dan pembahasan penyelesaian soal dengan cara menggunakan nalar dan rumus.

Praktik dan diskusi untuk mengenal perbandingan berbalik nilai melalui praktik memotong beberapa sedotan yang panjangnya sama dengan ukuran potongan berbeda. Menurut catatan guru, data pada tabel sangat efektif membantu pembahasan tentang membandingkan dua nilai dan hasilkalinya pada perbandingan berbalik nilai, sehingga generalisasi/rumus mudah diterima oleh siswa. Pernyataan tersebut didukung hasil angket terbuka pada siswa. Siswa menyatakan bahwa pembelajaran terasa lebih mudah, lebih real, mampu mengetahui dan melakukan praktik perbandingan berbalik nilai. Disimpulkan bahwa tugas proyek yang dirancang oleh guru dapat dipraktikkan, bersifat kontekstual, dan efektif dapat mengenalkan siswa tentang rumus perbandingan berbalik nilai.

Pada tindakan II melalui pembelajaran dengan model PjBL penugasan proyek dikerjakan secara kelompok, namun tugas pelaporan menjadi tugas individu. Langkah tersebut berhasil mengubah sikap siswa dalam mengikuti pembelajaran. Karena masing-masing ingin dapat mengumpulkan tugas pelaporan proyeknya, maka siswa menjadi aktif dan mau bertanya kepada guru maupun temannya. Tampak pada Tabel 7, Terdapat peningkatan signifikan rerata persentase pengamatan baik dalam hal keaktifan, kemauan bertanya siswa, dan keberhasilan proyek, dan tugas pelaporan. Keberhasilan proyek termasuk kategori sedang pada Tindakan I, meningkat dalam kategori tinggi pada Tindakan II.

Tabel 7. Perbedaan Hasil Pengamatan Baik dan Kategori Tindakan I dan Tindakan II

| Rerata Persentase Pengamatan Baik dan Kategori |               |                  |                     |                 |  |  |
|------------------------------------------------|---------------|------------------|---------------------|-----------------|--|--|
| Tindakan                                       | Keaktifan     | Kemauan Bertanya | Keberhasilan Proyek | Tugas Pelaporan |  |  |
| I                                              | 76%           | 70%              | 63%                 | 76%             |  |  |
|                                                | Tinggi Tinggi |                  | Sedang              | Tinggi          |  |  |
| II                                             | 89% 85%       |                  | 82%                 | 93%             |  |  |
|                                                | Tinggi        | Tinggi           | Tinggi              | Tinggi          |  |  |

Kemampuan Koneksi Matematis (KKM) siswa setelah Tindakan I dibanding dengan hasil tindakan II, ditunjukkan seperti pada Tabel 8. Pada Tabel 8 dibedakan KKM secara keseluruhan maupun pada tiap indikatornya.

Tabel 8. Perbedaan Hasil Tindakan I dan Hasil tindakan II

| No | Indikator       | Rerata Kelas |             |  |  |
|----|-----------------|--------------|-------------|--|--|
|    |                 | Tindakan I   | Tindakan II |  |  |
| 1  | KKM             | 32           | 73          |  |  |
|    | a. R1           | 42           | 78          |  |  |
|    | b. R2           | 38           | 86          |  |  |
|    | c. R3           | 45           | 72          |  |  |
|    | d. R4           | 11           | 51          |  |  |
|    | e. R5           | 28           | 75          |  |  |
| 2  | Nilai Tertinggi | 81           | 100         |  |  |
| 3  | Nilai Terendah  | 0            | 44          |  |  |
| 4  | Nilai ≥ 71      | 2 (6%)       | 18 (56%)    |  |  |

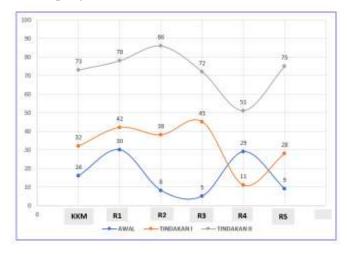
Tampak pada Tabel 8, terdapat peningkatan rerata KKM siswa maupun tiap indikatornya. Rerata KKM indikator R1 dan R2 setelah Tindakan II hasilnya meningkat signifikan dibanding dengan hasil pada Tindakan I. Rumus untuk perbandingan berbalik nilai tidak langsung diberikan. Rumus dikenalkan dengan cara menggunakan data hasil praktik yang direpresentasikan dalam tabel dan grafik. Kesan siswa, pembelajaran dilaksanakan dengan runtut dan dapat dipahami, tidak monoton, lebih bervariasi, diajak, dan dibuka wawasan untuk berpikir dengan membaca tabel dan grafik yang tersaji. Melalui tabel, siswa dapat mengenali ide-ide

matematis dan dapat menghubungkannya. Hasil tersebut senada dengan (Hidayah, I. & Kurniaasih, 2019), koneksi matematis dapat memberikan kesempatan bagi siswa untuk dapat memahami matematika secara mendalam, lebih menyeluruh, dan lebih bermakna.

Tampak pula Tabel 8, setelah Tindakan II, KKM siswa pada indikator R3, R4, dan R5 hasilnya meningkat dibanding pada Tindakan I. Hasil tersebut menunjukkan bahwa, siswa sudah mampu menyelesaikan masalah perbandingan berbalik nilai dikaitkan dengan topik matematika lain, mata pelajaran lain, maupun dengan masalah sehari-hari atau pada dunia nyata. Namun demikian, rerata pada indikator R4 nilainya paling rendah dibanding pada indikator lain. Untuk mengaplikasikan konsep matematika ke mata pelajaran lain, perlu dipahami tersendiri pengetahuan terhadap mata pelajaran lain tersebut.

# Refleksi Tindakan II

Berdasarkan deskripsi hasil tindakan II dan pembahasannya dapat diuraikan kekurangan dan kelebihan dalam tindakan II seperti berikut. Kekurangan dalam tindakan II ini adalah: konsep perbandingan berbalik nilai dapat digunakan untuk menyelesaikan masalah di mata pelajaran lain. Namun, untuk bisa menggunakannya diperlukan pemahaman tersendiri pengetahuan pada mata pelajaran lain tersebut oleh siswa maupun guru. Masih terdapat kesalahan siswa dalam menggambar grafik, skala untuk letak titik-titik pada absis dan ordinat belum diperhatikan kebenarannya. Sehingga grafik siswa belum merepresentasikan bentuk grafik perbandingan berbalik nilai sebenarnya.


Adapun kelebihan dalam tindakan II adalah: model pembelajaran *Project Based Learning* (PjBL) dapat dilaksanakan. Tugas proyek yang dirancang oleh guru dapat dipraktikkan, bersifat kontekstual, dan efektif dapat mengenalkan siswa tentang rumus perbandingan berbalik nilai. Tugas pelaporan menjadi tugas individu berhasil mengubah sikap siswa dalam pembelajaran. Frekuensi dalam hal keaktifan 89%, kemauan bertanya 85%, dan keberhasilan proyek 82% termasuk persentase dalam kategori tinggi. Rumus dikenalkan dengan cara menggunakan data hasil praktik yang direpresentasikan dalam tabel dan grafik. Pembelajaran dapat dipahami, tidak monoton, lebih bervariasi, diajak, dan dibuka wawasan untuk berpikir dengan membaca tabel dan grafik yang tersaji. Melalui tabel, siswa dapat mengenali ide-ide matematis, dapat menghubungkannya, dan dapat membuat kesimpulan lebih rinci. Penggunaan representasi matematis dalam bentuk table atau korespondensi satu-satu memudahkan siswa menggunakan nalar dan menunjukkan rumus yang digunakan untuk menyelesaikan soal. Rerata KKM siswa 73, merupakan hasil dalam kategori tinggi. KKM di tiap indikator hasilnya meningkat, termasuk dalam kategori tinggi atau sedang. Berdasarkan kekurangan dan kelebihan tindakan II tersebut dapat disimpulkan bahwa penggunaan model PjBL telah berhasil meningkatkan Kemampuan Koneksi Matematis (KKM) siswa kelas VII E.

Tabel 9. Perbedaan Rerata Kelas dan kategori KKM pada Kondisi Awal, Tindakan I, dan Tindakan II

| No | Indikator       | Rerata Kelas/Katego |         |        | ori    |          |        |
|----|-----------------|---------------------|---------|--------|--------|----------|--------|
|    |                 | Kondis              | si Awal | Tind   | akan I | Tindak   | an II  |
| 1  | KKM             | 16                  | Rendah  | 32     | Rendah | 73       | Tinggi |
|    | a. R1           | 30                  | Rendah  | 42     | Sedang | 78       | Tinggi |
|    | b. R2           | 8                   | Rendah  | 38     | Sedang | 86       | Tinggi |
|    | c. R3           | 5                   | Rendah  | 45     | Sedang | 72       | Tinggi |
|    | d. R4           | 29                  | Rendah  | 11     | Rendah | 51       | Sedang |
|    | e. R5           | 9                   | Rendah  | 28     | Rendah | 75       | Tinggi |
| 2  | Nilai Tertinggi | 69                  |         | 81     |        | 100      |        |
| 3  | Nilai Terendah  | 0                   | •       | 0      | •      | 44       |        |
| 4  | Nilai ≥ 71      | 0 (0%)              |         | 2 (6%) |        | 18 (56%) |        |

Dampak penggunaan model PjBL ditunjukkan dengan meningkatnya KKM siswa dari kemampuan awal, Tindakan I, dan Tindakan II tampak seperti pada Tabel 9 dan Gambar 2. KKM siswa setelah Tindakan I hasilnya

meningkat walaupun masih dalam kategori rendah. Setelah dilakukan Tindakan II KKM siswa berhasil meningkat signifikan dengan kategori tinggi. Meningkatnya KKM siswa ditunjukkan dengan meningkatnya secara signifikan dari kategori rendah ke tinggi pada indikator R5. Penerapan model PjBL dilakukan melalui pengerjaan proyek berkaitan dengan masalah sehari-hari dan dipraktikkan secara langsung oleh siswa. Hasilnya, berdampak langsung dengan meningkatnya secara signifikan pada kemampuan siswa menyelesaikan masalah berkaitan dengan masalah sehari-hari atau pada dunia nyata. Meningkatnya KKM siswa secara bertahap pada indikator R1, R2, dan R3 tampak pada Gambar 2. Peningkatan tersebut ditunjukkan dengan meningkatnya kemampuan mengenali dan menghubungkan ide-ide yang direpresentasikan dalam bentuk tabel atau korespondensi satu-satu, serta dapat menggunakannya untuk menyelesaikan masalah dikaitkan dengan topik matematika lain (Nur Yuliani et.al, 2021). Meningkatnya KKM siswa dari kategori rendah ke sedang pada indikator R4. Untuk mengaplikasikan konsep matematika ke mata pelajaran lain, perlu dipahami secara mendalam pengetahuan pada mata pelajaran lain tersebut.



Gambar 2. Tren Meningkatnya KKM siswa dan Tiap Indikatornya

### **SIMPULAN**

Rerata Kemampuan Koneksi Matematis (KKM) awal siswa kelas VII E adalah 16, termasuk dalam kategori rendah. Rerata KKM tiap indikator termasuk dalam kategori rendah.

Pembelajaran pada Tindakan I pembelajaran difokuskan pada materi membandingkan dan perbandingan senilai. Pembelajaran dilaksanakan menggunakan pendekatan kontekstual dengan model *Project Based-Learning* (PjBL) dalam 4 pertemuan. Berbagai Lembar Kerja Siswa (LKS) dan media sebagai bahan proyek disiapkan. Penugasan proyek diberikan, baik dalam mendiskusikan materi maupun dalam latihan soal. LKS juga selalu disertai media maupun bahan kontekstual yang membantu tugas proyek siswa pada topik matematika, topik di luar matematika, maupun masalah sehari-hari/dunia nyata.

Pada Tindakan I, pendekatan kontekstual dapat diterapkan dan menyenangkan bagi siswa, karena menggunakan objek/barang untuk praktik. Proyek yang dirancang oleh guru dapat dipraktikkan dan siswa dapat mengenal jenis perbandingan. Monitoring guru dengan berkeliling ke kelompok-kelompok efektif mengatasi kesulitan siswa saat praktik dan diskusi. Lembar kerja siswa disusun sistematis, tugas proyek dapat dilaksanakan, dapat diperoleh data, dapat dibuat table dan grafik, dan dapat dilakukan pembandingan. Melalui penerapan model PjBL pada Tindakan I berhasil meningkatkan KKM siswa kelas VII E menjadi 32, hasil masih dalam kategori rendah. Persentase siswa hasil pengamatan baik, keaktifan 76% dan kemauan bertanya 70% dalam praktik dan diskusi termasuk dalam kategori tinggi. Rerata keberhasilan proyek 63%, termasuk dalam kategori sedang. Berdasarkan hasil tersebut diadakan perbaikan pada Tindakan berikutnya.

2423 Upaya Meningkatkan Kemampuan Koneksi Matematis Siswa melalui Pembelajaran dengan Model Project Based Learning - Sumarsih DOI: https://doi.org/10.31004/edukatif.v5i6.5559

Pembelajaran pada Tindakan II difokuskan pada materi perbandingan berbalik nilai, dilaksanakan dalam 2 pertemuan. Pembelajaran dilaksanakan dengan pendekatan kontekstual dan menggunakan model PjBL. Dilakukan dua modifikasi yaitu 1) pelaporan tugas proyek sebagai tugas kelompok menjadi tugas individu 2) pembahasan penyelesaian soal dengan cara menggunakan nalar dan rumus.

Pada Tindakan II, model PjBL dapat dilaksanakan. Tugas proyek yang dirancang oleh guru dapat dipraktikkan, bersifat kontekstual, dan efektif dapat mengenalkan siswa tentang rumus perbandingan berbalik nilai. Penggunaan model PjBL pada Tindakan II telah berhasil meningkatkan KKM siswa kelas VII E menjadi 73, termasuk kategori tinggi. KKM di tiap indikator hasilnya meningkat, empat indikator termasuk kategori tinggi dan satu indikator sedang. Tugas pelaporan menjadi tugas individu berhasil mengubah sikap siswa dalam pembelajaran. Persentase pengamatan baik dalam hal keaktifan 89%, kemauan bertanya 85%, dan keberhasilan proyek 82% termasuk persentase dalam kategori tinggi. Meningkatnya KKM siswa ditunjukkan dengan meningkatnya kemampuan mengenali ide-ide yang direpresentasikan dalam bentuk tabel atau korespondensi satu-satu. Ditunjukkan pula, siswa mampu menyelesaikan masalah perbandingan berbalik nilai dikaitkan dengan topik matematika lain, mata pelajaran lain, maupun dengan masalah sehari-hari atau pada dunia nyata.

### **DAFTAR PUSTAKA**

(NCTM)., N. C. of T. of M. (2000). Principles and Standards Schools Mathematics. Reston, VA: NCTM.

Adisasmita, W. (n.d.). Remodeling sekolah di era normal baru. TV Nasional.

Azwar, S. (2012). Penyusunan Skala Psikologi edisi 2. Pustaka Pelajar.

Brodie, K. (2010). Teaching Mathematical Reasoning in Secondary School Classrooms. In *Springer Science+Business Media*.

Cooney, T. J., Davis, E. J., & Henderson, K. . (1975). *Dynamics of Teaching Secondary School Mathematics*. Houghton Mifflin Company.

Daryanto, & Rahardjo, M. (2012). Model Pembelajaran Inovatif. Gava Media.

Gaer, S. L. (1998). Teaching and More Learning in "Focus on Basics. 2(December 1998).

Goodman, Brandon, & Stivers, J. (2010). Project-Based Learning. Educationa Psychology. ESPY 505.

Hidayah, I., & Kurniaasih, D. (2019). An analysis of mathematical connection ability viewed from students' questioning -skills through the educational tools in connected mathematics project learning model. *Unnes Journal of Mathematics Education*, 8(1), 65–74. https://doi.org/10.15294/ujme.v8i1.25949

Johnson, B. E. (2002). Contextual Teaching and Learning: Why It Is and Why It Is Here To Stay. Sage Publications Ltd.

Masuddi et.al. (2022). Pengaruh Model Contextual Teaching Learning Dan Gaya Belajar Terhadap Hasil Belajar Matematika Siswa Kelas V Sekolah Dasar. Edukatif. *Jurnal Ilmu Pendidikan. Faculty of Education, University of Pahlawan Tuanku Tambusai*, 4(6), 7640–7652.

Mulyasa, E. (2014). Implementasi Kurikulum 2013. PT Remaja Rosdakarya.

Nägele, T., Weckwerth, W., Szymanski, J. J., & Planck, M. (2014). Mathematical modeling reveals that metabolic feedback regulation of SnRK1 and hexokinase is sufficient to control sugar homeostasis from energy depletion to full recovery. *Frontiers in Plant Science*, *5*(5), 1–11. https://doi.org/https://doi.org/10.3389/fpls.2014.00365

Nur Yuliani et.al. (2021). Pengembangan Instrumen Tes untuk Mengukur Kemampuan Problem Solving Siswa pada Materi Aritmatika Sosial. Edukatif. *Jurnal Ilmu Pendidikan. Faculty of Education, University of Pahlawan Tuanku Tambusai*, *3*(6), 3905–3918. https://doi.org/DOI: https://doi.org/10.31004/edukatif.v3i6.1226

Nurhadi. (2002). Pendekatan Kontekstual. Departemen Pendidikan Nasional.

- 2424 Upaya Meningkatkan Kemampuan Koneksi Matematis Siswa melalui Pembelajaran dengan Model Project Based Learning Sumarsih DOI: https://doi.org/10.31004/edukatif.v5i6.5559
- Ramziah, S. (2016). Peningkatan Kemampuan Representasi Matematis Siswa Kelas X2 SMAN 1 Gedung Meneng Menggunakan Bahan Ajar Matriks Berbasis Pendekatan Saintifik. *Mosharafa: Jurnal Pendidikan Matematika*, 5(2), 138–147.
- Ratnasari, N., Tadjudin, N., Syazali, M., Mujib, & Andriani. (2018). No Title. *Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah*, *3*(1), 47–53. https://doi.org/DOI: 10.24042/tadris. v3i1.2535
- Rosmaini. (2023). Analisis Faktor-Faktor yang Mempengaruhi Kemampuan Berpikir Kritis dalam Pembelajaran Matematika. Edukatif. *Jurnal Ilmu Pendidikan*. *Faculty of Education*, *University of Pahlawan Tuanku Tambusai*, 5(2), 869–879.
- Sardiman, A. . (2011). Interaksi & Motivasi Belajar Mengajar. PT Raja Grafindo Persada.
- Thomas, J. W. (2000). A Review of Research on Project-Based Learning.
- Widodo, J. (2020). Kebijakan komprehenship untuk berdamai dengan Covid-19.
- Yuanita, P., Id, H. Z., & Id, E. Z. (2018). The effectiveness of Realistic Mathematics Education approach: The role of mathematical representation as mediator between mathematical belief and problem solving. *PLoS ONE*, 13(9), 1–20.
- Yuswohady. (2020). Consumer Behavior Shiftings Amid the Covid-19: Welcome New Normal. In *video conference*. Senin (20/4).